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Some species of semi-aquatic arthropods including water striders and springtails can jump

from the water surface to avoid sudden dangers like predator attacks. It was reported

recently that the jump of medium-sized water striders is a result ofsurface-tension dominated

interaction of thin cylindrical legs and water, with the leg movement speed nearly optimized

to achieve the maximum take-o� velocity. Here we describe the mathematical theories to

analyze the exquisite feat of nature by combining the review of existing models for oating

and jumping and the introduction of the hitherto neglected capillary forces at the cylinder

tips. The theoretically predicted body height versus time is shown tomatch the results of

observing the jumps of the water striders and springtail regardless of the length of locomotory

appendages. The theoretical framework can be used to understand the design principle of

small jumping animals living on water and to develop biomimetic locomotiontechnology in

semi-aquatic environments.

I. INTRODUCTION

The locomotion of semi-aquatic arthropods, such as water striders, springtails, and �sh-

ing spiders, has long fascinated hydrodynamicists as well as biologists for its unique features

di�erentiated from any other large aquatic animals. Their bo dies are covered with super-water-

repellent hairs [1], which allow them to oat on water withou t e�ort. Since almost no body

parts are immersed in water, their lateral locomotion is described as skating or walking rather
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FIG. 1: (a) The front view of a water strider jumping o� the water s urface taken by a high-speed camera.

(b) The side view of a water strider during its jump with length parameters used in the modeling.

than swimming. As living on the air-water interface and having inherently small sizes, they

rely on the capillary forces, which are important only under millimetric scales, for oating and

propulsion. Some species do not even need to actively move their appendages to propel across

the water surface - the gradient of the capillary force generated either by surfactant secretion

[2] or meniscus deformation [3] allows small insects or larvae to travel on the water surface.

The focus of this work is on the vertical, rather than lateral, propulsion of the arthrodpods,

especially water striders [4] and springtails [5]. Severalspecies of aquatic animals can launch

into air from under the water surface, like copepods [6, 7], penguins [8], dolphins [9], and even

synchronized swimmers. But they start to acquire thrust for jumping under water in a similar

fashion to how they usually swim - by undulating their bodies or rowing their appendages. In

contrast, the semi-aquatic arthropods appear to get airborne without any cumbersome prolusion.

As seen in Fig. 1(a) only a single stroke is enough to lift the water strider o� the water surface to

a height several times the body length. This amazing feat is closely related to their capabilities

to e�ectively use the capillary force that water surface provides [10].

The jumps of small arthropods are usually triggered by sudden attack of predators, such as

�sh and backswimmers. As it is the matter of life and death, it is likely that their jumping is

shaped by natural selection for optimal performance [11]. Therefore, understanding how they

make such a dramatic motion for survival can shed light on theultimate level of semi-aquatic

motility achievable through evolution. In addition, the ph ysical analysis of the kinematics and

dynamics of the natural creatures' water jumping can guide us to design and optimize the

micro-robots that can jump o� water surface at a maximum e�ci ency.
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In an attempt to emulate the jumping of a water strider on the water surface, Koh et al. [10]

analyzed the trajectory of the strider legs and the resulting forces provided by the deforming

water meniscus. Then an at-scale micro-robot was demonstrated which rotated its legs at a

relatively low velocity with a force just below that require d to break the water surface. Yang

et al. [11] calculated the take-o� velocity of various species of medium-sized water striders by

combining the force pro�le exerted on the legs and their rotational kinematics. The analysis led

to the conclusion that the striders tune the stroke speed to nearly maximize the take-o� velocity.

In view of the recent achievements in elucidating the optimal strategy for jumping of water

striders and currently growing interest in bioinspired soft robots [12], here we aim to provide a

coherent review of the theories for jumping on water from thebasics of how small objects oat

on water to the sophisticated behavior of water striders forimproved e�ciency. Furthermore,

we need to answer the question whether the theories can be applied to the jumping of other

semi-aquatic creatures. Therefore, in the following we start with reviewing the fundamental

mechanics associated with oating of small objects at the air-water interface. Then we explain

the theoretical framework to analyze and predict the jumping of a water strider o� water surface.

Further, we discuss the motion strategies adopted by the striders to enhance the take-o� velocity

and consequently jumping height. Finally, we extend the theoretical approach to the jump of

springtails whose locomotory appendage is much shorter than the strider legs.

II. FORCE ON A FLOATING CYLINDER

To mathematically analyze the jumping of small arthropods on water, it is essential to un-

derstand the forces acting on a oating object as illustrated in Fig. 2. While a completely

immersed body is under its own weight and hydrostatic pressure force in a static situation, the

oating object experiences the additional force due to surface tension acting along the three

phase (liquid-solid-gas) contact line in the direction tangential to the interface. Whether the

surface tension will help the object to oat or not, or the dir ection of the force (� ), depends on

the contact angle � , the relative elevation of the object, and the object shape. The restoring

force on the oating body, a sum of the hydrostatic pressure force and the surface tension force,

is equal to the weight of the liquid displaced by the solid object and the meniscus [13, 14].

The length scale over which the meniscus pro�le decays is thecapillary length lc = [ �= (�g )]1=2,

with � and g being the water density and the gravitational acceleration, respectively. For an

object with its characteristic length r being r � lc, the restoring force is dominantly due to

surface tension. Here we are interested in the otation of hydrophobic cylindrical objects because
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FIG. 2: (a) Forces acting on a cylinder oating on water. (b) The shape of a long exible cylinder which

is supported by the deformed interface. (c) The pro�le of meniscus extending from an end of a cylinder

at depth h = 0 :6 mm to the undisturbed free surface of water. The three-dimensional Laplace-Young

equation was solved assuming that� at z = 0 is given by the two-dimensional Laplace-Young equation

solved for the cylinder side. Only half the depressed surface (positive x) is shown for clarity. (d) The

scaled volume,
̂ = 
 =(l2
ch), displaced by the meniscus versus the scaled depth of the cylinderend, h=lc.

The circles are the computational results and the line is from the best-�tting formula.

of their resemblance to locomotory appendages of water striders and springtails. For a cylinder

whose cross-section is shown in Fig. 2(a), the restoring force due to surface tension along its two

sides,F 0
s, is given by F 0

s = 2 �l w sin � , where lw is the wetted length of the cylinder. By Keller's

theorem [13], F 0
s is equal to the weight displaced by the meniscus which can be calculated by

solving the two-dimensional Laplace-Young equation:

�g
�

� =
� xx

(1 + � 2
xx )3=2

; (1)

where � is the deection of the interface. It was shown that [15]

F 0
s = 2 �gl clwh

"

1 �
�

h
2lc

� 2
#1=2

; (2)

where h is the vertical downward distance of the cylinder from the undisturbed free surface.

When the cylinder is exible due to its long and slender geometry, the bending of the cylinder

along its length should be taken into account [16, 17] as shown in Fig. 2(b). Although numerical

computation is required to solve the beam equation with the meniscus shape given by the
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Laplace-Young equation at each position of the bent cylinder, we may simply modify Eq. (2) to

express the force on the sides of a long but thin exible cylinder as Fs = CF 0
s [11]. Here, the

exibility factor C depends on the scaled cylinder lengthL = lw=le, where le = ( Bl c=� )1=4 is the

modi�ed elastocapillary length of the cylinder of radius r with the bending rigidity B = �Er 4=4:

C � (1 + 0 :082L 3:3)� 1 for L < 2 and C � (1:15L)� 1 for L > 2.

In addition to the cylinder sides, the end tips of cylinders cause the interface deformation

contributing to the restoring force. To obtain the capillar y force at the cylinder end,Fe, which is

taken to be the weight of the water displaced by the meniscus formed by the tip of the cylinder

[18], we �rst calculate the pro�le of the meniscus, � (x; z), that extends from the depressed tip at

� = h to the undisturbed free surface. The interface shape is governed by the three-dimensional

Laplace-Young equation [18]:

�g
�

� =
(1 + � 2

x )� zz � 2� x � z� xz + (1 + � 2
z )� xx

(1 + � 2
x + � 2

z )3=2
: (3)

It can be solved numerically, and the pro�le of the meniscus adjoining a tip of a thin superhy-

drophobic cylinder (� = 167� , a typical value for superhydrophobic arthropods [19]) ath = 0 :6

mm is shown in Fig. 2(c). The volume displaced by the meniscus
 =
R

A � dA with A being the

area in the xz-plane, and the corresponding upward forceFe = �g 
.

We seek a simpli�ed way to obtain Fe which is dominantly dependent on h for a thin su-

perhydrophobic cylinder. When the water surface is depressed, the interface is deformed over

a distance of the order oflc. Therefore, the volume of water that is displaced by the meniscus

extending from a point at the depth h as shown in Fig. 2(c) is scaled asl2ch. We calculated the

scaled volume
̂ = 
 =(l2ch) for varying ĥ = h=lc, to �nd that 
̂ � � 0:35̂h2 + � 0:04̂h + 2 :0. See

Fig. 2(d). Therefore, the upward force due to the cylinder end at depth h is simply given by

Fe = �g 
̂ l2ch. In particular, for h � lc, Fe � 2�gl 2
ch.

The total force acting on the oating cylinder F = Fs + kFe with k = 2 for a cylinder

whose both ends touch the water surface andk = 1 for a cylinder with only one end depressing

the water. The volume of the water displaced by the meniscus adjoining the cylinder side


 s � lclwh, while the volume displaced by the cylinder end 
 � l2ch. Hence, the relative

importance of the capillary force acting on the cylinder end to that on the cylinder side is

estimated as 
 =
 s � lc=lw . Therefore, the end force can be neglected when the wetted length

of cylinder lw is signi�cantly greater than the capillary length of water, lc = 2 :7 mm.
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III. ANALYSIS OF WATER STRIDER JUMPING

Figure 1(a) shows the snapshots of the front view of a water strider during its jump on water.

A major goal of the theoretical analysis for this motion is to predict the temporal evolution of

the body height as the strider rotates its middle and hind legs. In this section, we delineate the

theoretical framework developed in [10, 11] and present a novel result of predicting the body

center height versus time. We �rst start with identifying th e dominant force acting on the water

strider legs. While the strider pushes the water surface down to create dimples, various forces

are exerted on the insect's legs including the capillary force F , pressure force, buoyancy, added

inertia, viscous drag, and the weight of the strider. With ty pical kinematic parameters for the

medium-sized water strider species, the capllary force on the leg sides,Fs � 2�l w , turns out to

be orders of magnitude greater than the other forces [10, 11]. Also, we neglect the force acting

on the end of the leg for its great length. Hence, the jump can be simpli�ed as a surface-tension

dominant interaction of a long thin exible cylinder with th e water surface. Then the force

acting on the four legsF = 4Fs = 4CF 0
s with F 0

s given by Eq. (2).

The fact that the dimple depth gives the force acting on the legs with known properties of

water and the leg allows us to calculate the body center height y(t), t being time, with respect to

the unperturbed free surface when the leg motion is pre-described. For the length symbols used

in the modeling, see Fig. 1(b). The experimental measurements reveal that the leg rotation rate

of the water striders can be approximated as a constant! , leading us to write the downward

linear velocity of the leg vs = _ls = ! (l l � yi ) sin(2!t ), where the subscript s stands for stroke.

Here, ls = y + h is the vertical distance from the body center to the tip of the leg, l l is the

entire length of the leg consisting of femur, tibia and tarsus, and yi is the initial height of the

body center from the undisturbed free surface of water. Forls � yi initially ( t = 0), we obtain

ls = 1
2(l l � yi )[1 � cos(2!t )] + yi .

We now describe the temporal evolution ofh, which comes from Newton's second law of

motion: F = m•y or •h = •ls � F (h(t); lw (t))=m. Using Eq. (2), we obtain the second order

ordinary di�erential equation for h, which can be solved numerically. In the �rst (pushing)

phase of the jump, t = 0 to tm = 13 ms in Fig. 1(a), when the legs push the water surface

down with a constant wetted length (the length of tibia plus t arsus,l t ), the initial conditions are

such that h(0) = _h(0) = 0. In the second (closing) phase which starts upon the dimple depth

reaching its maximum (hm ) at t = tm , the legs slide on the water surface towards the body while

gradually disengaging themselves from the water surface with a decrease inlw . Thus, for the

closing stage, we useh(tm ) = hm and _h(tm ) = 0 as the initial conditions and model the wetted
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FIG. 3: (a) The height of body center of jumping water striders versus time. Circles and triangles

correspond to the experimental results and lines to the theoretical predictions. Black symbols correspond

to the jump of a male Aquarius paludum with m = 37 mg, r = 130 � m, l l = 22:6 mm, lw = 13 mm,

and ! = 60 rad s� 1. Red symbols correspond to the jump of a maleGerris paludum with m = 31 mg,

r = 130 � m, l l = 15:9 mm, lw = 7 :7 mm, and ! = 77 rad s� 1. (b) The force acting on a leg of a water

strider versus time corresponding to the black symbols in (a).

length as lw = l t (h=hm )( �= 2 � !t )=(�= 2 � !t m ).

With ls and h described as a function of time, we can �nd the temporal evolution of the

body center height y = ls � h. Also, the takeo� velocity of the water strider _y(t t ) can be de�ned

as the velocity at the moment when the end tips of escaping legs reach zero depth position, or

h(t t ) = 0. In Fig. 3(a) we plot the theoretically predicted height of the body center versus time,

and �nd good agreement between theory and experiment.

The force acting on the four legs of a water strider until it disengages from the water surface

is plotted versus time in Fig. 3(b). It is the area below the force-time curve that the strider needs

to increase to maximize the takeo� velocity because _y(t t ) =
Rt t

0 F dt=m by Newton's second law

of motion. The maximum force that the strider leg can exert on the water surface is limited

by the surface tension: 2� per unit length. In this case, the dimple depth is also maximized to

be H =
p

2lc [11]. In addition to the force value, the rate at which the force increases to its

maximum should be limited for a few reasons. The rate corresponds to the descending speed

of the legs which in turn is determined by the leg rotation speed. The strength and agility of

the strider muscles driving the leg rotation would be the natural limiting factor. Even when the

capability of the muscle is su�cient, the leg will penetrate the water surface if it descends too

fast before the body center rises. The total length of a waterstrider leg reaches approximately 22

mm, much longer thanH = 3 :8 mm, thus merely pointing its legs downward without elevating its

body would de�nitely cause the water penetration, as depicted in Fig. 4(a), which dramatically
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FIG. 4: (a) The e�ects of the leg rotation speed in the penetration of water surface. When the leg rotation

rate ! is too high, the legs pierce the water surface, failing to use the capillary force. (b) The role of leg

rotation in prolonging the interaction between the leg and water surface. In the upper case where the leg

pushes down the water surface without rotation, the leg is disengaged from the water surface too early.

In the lower case where the leg rotates, the interaction time of leg and water surface increases.

reduces the water's reaction force. It was reported in [11] that the medium-sized water strider

species always tune their leg rotation speed so as to make themaximum dimple depth, h(tm ),

close toH .

With the maximum value and growth rate of the force being limited by the foregoing factors,

it would be a natural strategy for the strider to prolong the i nteraction with water in order

to increase the area under the force-time curve. To this end,the water strider rotates its legs

causing them to slide along the water surface unlike most terrestrial animals that push down a

�xed spot under their feet before jumping. In the pushing phase when the dimple depth grows

with the descent of the strider leg, the e�ect of rotation is not prominent. But without rotation,

the strider leg would no longer be in contact with water after the pushing phase because it

ascends too fast compared to the recovery rate of the dimple.See Fig. 4(b). The ascent speed or

the take-o� velocity, v, is of the order 1 m s� 1 while the dimple recovery rate Ur � lc=tr � 10� 1

m s� 1 as scaled using the dimple depth� lc and the characteristic time t r for the capillary-

gravity wave to travel the capillary length [20]. Through ro tation, the legs can keep pressing the

water surface in the closing phase to use the capillary forcethat the water meniscus provides

even after the dimple depth is maximized.

IV. ANALYSIS OF SPRINGTAIL JUMPING

Springtails are tiny hexapods living on land and water having the body length of only a

few millimeters. They have an abdominal appendage called furcula, which is folded beneath

the body but released when threatened to snap against the substrate (either solid or water),
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FIG. 5: (a) Micrograph of a springtail with the body length of 1.7 mm. (b) Time series of jumping of

the springtail on the water surface. The time interval between the adjacent images is 0.2 ms. Panels (a)

and (b) reprinted from [5]. (c) The height of the body center versus time. The circles correspond to the

measurement result of [5] and the line is our theoretical prediction.(d) The temporal evolution of the

total capillary force F consisting of the forces on the side (Fs) and the end (Fe) of the furcula.

launching the animal into air. Figure 5(a) shows the micrograph of a springtail, Podura aquatica,

whose jumping was �lmed with a high-speed camera [5]. The furcula is forked at the end of the

cylindrical basal part (manubrium). As shown in Fig. 5(b), a dimple is formed on the water

surface as the furcula rotates, a similar process to what is observed in the jump of a water

strider.

The forces acting on the furcula include the capillary forceF � 2�l w , pressure forceFp �

�U 2rl w , buoyancy Fb � �gr ~hlw , added inertia Fa � �r 2lwU2=~h, viscous forceFv � �rl wU=lc

and the weight of the springtail Fw � mg. Here r is the characteristic radius of the furcula

taken to be similar to that of manubrium, 85 � m in Fig. 5(a). U is the rate of vertical growth

of dimple (� 0:1 m s� 1), � is the viscosity of water, andm is the mass of the springtail taken to

be 0.15 mg as an average value of the springtail [21, 22]. The wetted length lw corresponds to
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the length of the furcula, measured to be 1.1 mm from the imageof the extended furcula in [5].

The comparison of the magnitude of the aforementioned forces reveals that the capillary force

dominates over the other forces in the jump of springtails just as in water striders.

The growth of the dimple volume corresponds to the increase of the upward capillary force,

which lifts the body center. Therefore, we again write the height of the body center y(t) =

ls(t) � h(t), where ls is the vertical distance from the body center to the tip of the furcula.

We use the average angular velocity of the furcula measured in Fig. 5(b), ! = 1300 rad s� 1,

to give ls = 1
2(l f � yi )[1 � cos(2!t )] + yi , where l f is the furcula length. We take the wetted

length lw = l f from the beginning to the moment (t = tm ) when the dimple depth is maximized.

For t > t m , the wetted length reduces with time as the furcula is disengaged from the water

surface. It is modeled bylw = l f (h=hm )( � m � !t )=(� m � !t m ), where the maximum stroke angle

� m = 2 :22 rad is greater than�= 2, the maximum value for the water strider. To obtain h(t), we

use Newton's second law of motion:•h = •ls � F=m with F determined in the following.

For the water striders having a wetted length signi�cantly g reater than lc, the capillary force

acting along the sides of the leg is dominant, allowing us to estimate F � Fs. However, in

evaluating the capillary force on a short cylinder, like the furcula of the springtail, the force

acting at the end cannot be ignored forlw < l c. Then we write the total force that supports the

appendage asF = Fs + Fe. Although numerical computations of the two- and three-dimensional

Laplace-Young equations are necessary to rigorously evaluate Fs and Fe, respectively, we may

use the simpli�ed expressions for the forces that �t the numerical results: Fs = 4CF 0
s and

Fe = �g 
̂ l2ch as provided in the previous section.

Now we solve the di�erential equation for h with a known expression ofF with respect to h,

which �nally gives y(t) in the same manner as the water strider's case. Figure 5(c) shows that

the theoretically predicted height of the springtail's body center versus time agrees well with

the measurement result, demonstrating that the theoretical framework developed for the water

strider can be applied to other semi-aquatic jumping animals as well. Figure 5(d) compares the

magnitudes of Fs and Fe in the jumping of the springtail, to reveal that Fe is greater than Fs,

taking up to 69% of the entire force. Unlike the water striders, which have the legs longer than

the maximum dimple depth that the water surface allows, H , and consequently need to control

the leg stroke speed not to break the water surface, the springtails have no danger of piercing

the water surface for their short furcula. Thus, the snapping speed of the furcula of a given

length is a solely important parameter that determines the take-o� velocity and the jumping

height.



11

V. CONCLUSIONS

It is an exquisite feat of nature that small semi-aquatic arthropods like water striders and

springtails jump o� the water surface to a height several times their body length without sinking.

Upon the basis of the previous works delving into the secret of successful jumping on water [10]

and the optimized motion strategy to maximize the chance to escape from danger [11], we

have delineated the mathematical theory to predict the bodyheight as a function of time with

given information of leg morphology, properties and kinematics. While the foregoing analyses

of oating and jumping of semi-aquatic insects [10, 11, 16] considered the capillary force acting

along the sides of the cylindrical leg only, we have newly added the contribution of the water

weight displaced by the meniscus adjoining the leg tip. The new addition, which was unnecessary

for the jumping of water striders with relatively long legs, has allowed us to correctly predict

the jumping of springtails with a relatively short locomoto ry appendage.

A number of exciting problems in the mechanical analysis of water jumping await to be

explored in the future, as listed partially in the following . First, the ability of the water strider

to control its jumping direction or angle is of interest. In our experiments, the jump trajectories

of striders deviated from the vertical in some cases, which were controlled by the delicate motion

of middle and hind legs. How the insect e�ectively uses the capillary force to produce the reaction

in the horizontal direction may open up a new pathway to enable a novel locomotion scheme on

water. Second, the role of microscale hairs covering the legs of water striders at a slanted angle

[1] in the jumping performance needs to be investigated. Theasymmetric friction with water due

to hair angle might contribute to the enhancement of e�ciency and the reduction of chance of

water penetration. Third, the optimal design and motion pri nciple of the furcula of the springtail

is unknown. Since it does not penetrate the water surface, the motion strategy discovered for

the water strider seems irrelevant. The forked end region termed dens in Fig. 5(a) is rather

smooth without hairs, and thus it is speculated to be relatively hydrophilic and responsible for

partial water penetration as seen in Fig. 5(b). The smooth part may be used in anchoring the

body on water [1]. Consideration of the diverse functions ofthe appendage will result in the full

physical understanding of its design.

Mathematical approaches to analyze the locomotory behavior of biological creatures have

played a pivotal role in elucidating their optimal design principle to survive and prosper through

a long history of natural selection [23, 24]. The present work carries on the theoretical endeav-

ors to mechanically analyze the horizontal [2, 4, 25] and vertical [10, 11] motion of semi-aquatic

arthropods. The physical �ndings have helped and will continue to inspire biologists to under-
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stand the evolutionary pressure that shaped the anatomical, morphological and kinematic traits

of each species living on water. Furthermore, the fundamental design principles and motion

strategies learned from the semi-aquatic arthropods can give a guideline to develop robots that

can exhibit superior maneuverability on water with a maximized e�ciency.
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